
SESSION 2

Programming Languages for Objects

 The Basic Java Application
 Variables and the Primitive Types
 Strings, Classes, Objects, and Subroutines
 Text Input and Output
 Details of Expressions
 Programming Environments

Programming in the Small I: Names and Things

ON A BASIC LEVEL (the level of machine language), a computer can perform only very

simple operations. A computer performs complex tasks by stringing together large numbers of

such operations. Such tasks must be "scripted" in complete and perfect detail by programs.

Creating complex programs will never be really easy, but the difficulty can be handled to some

extent by giving the program a clear overall structure. The design of the overall structure of a

program is what I call "programming in the large."

Programming in the small, which is sometimes called coding, would then refer to filling in the

details of that design. The details are the explicit, step-by-step instructions for performing fairly

small-scale tasks. When you do coding, you are working "close to the machine," with some of

the same concepts that you might use in machine language: memory locations, arithmetic

operations, loops and branches. In a high-level language such as Java, you get to work with these

concepts on a level several steps above machine language. However, you still have to worry

about getting all the details exactly right.

This chapter and the next examine the facilities for programming in the small in the Java

programming language. Don't be misled by the term "programming in the small" into thinking

that this material is easy or unimportant. This material is an essential foundation for all types of

programming. If you don't understand it, you can't write programs, no matter how good you get

at designing their large-scale structure.

The Basic Java Application

A PROGRAM IS A SEQUENCE of instructions that a computer can execute to perform some

task. A simple enough idea, but for the computer to make any use of the instructions, they must

http://math.hws.edu/javanotes/c2/s1.html
http://math.hws.edu/javanotes/c2/s2.html
http://math.hws.edu/javanotes/c2/s3.html
http://math.hws.edu/javanotes/c2/s4.html
http://math.hws.edu/javanotes/c2/s5.html
http://math.hws.edu/javanotes/c2/s6.html

be written in a form that the computer can use. This means that programs have to be written in

programming languages. Programming languages differ from ordinary human languages in being

completely unambiguous and very strict about what is and is not allowed in a program. The rules

that determine what is allowed are called the syntax of the language. Syntax rules specify the

basic vocabulary of the language and how programs can be constructed using things like loops,

branches, and subroutines. A syntactically correct program is one that can be successfully

compiled or interpreted; programs that have syntax errors will be rejected (hopefully with a

useful error message that will help you fix the problem).

So, to be a successful programmer, you have to develop a detailed knowledge of the syntax of

the programming language that you are using. However, syntax is only part of the story. It's not

enough to write a program that will run -- you want a program that will run and produce the

correct result! That is, the meaning of the program has to be right. The meaning of a program is

referred to as its semantics. More correctly, the semantics of a programming language is the set

of rules that determine the meaning of a program written in that language. A semantically correct

program is one that does what you want it to.

Furthermore, a program can be syntactically and semantically correct but still be a pretty bad

program. Using the language correctly is not the same as using it well. For example, a good

program has "style." It is written in a way that will make it easy for people to read and to

understand. It follows conventions that will be familiar to other programmers. And it has an

overall design that will make sense to human readers. The computer is completely oblivious to

such things, but to a human reader, they are paramount. These aspects of programming are

sometimes referred to as pragmatics. (I will often use the more common term style.)

When I introduce a new language feature, I will explain the syntax, the semantics, and some of

the pragmatics of that feature. You should memorize the syntax; that's the easy part. Then you

should get a feeling for the semantics by following the examples given, making sure that you

understand how they work, and, ideally, writing short programs of your own to test your

understanding. And you should try to appreciate and absorb the pragmatics -- this means learning

how to use the language feature well, with style that will earn you the admiration of other

programmers.

Of course, even when you've become familiar with all the individual features of the language,

that doesn't make you a programmer. You still have to learn how to construct complex programs

to solve particular problems. For that, you'll need both experience and taste. You'll find hints

about software development throughout this textbook.

We begin our exploration of Java with the problem that has become traditional for such

beginnings: to write a program that displays the message "Hello World!". This might seem like a

trivial problem, but getting a computer to do this is really a big first step in learning a new

programming language (especially if it's your first programming language). It means that you

understand the basic process of:

1. getting the program text into the computer,
2. compiling the program, and
3. running the compiled program.

The first time through, each of these steps will probably take you a few tries to get right. I won't

go into the details here of how you do each of these steps; it depends on the particular computer

and Java programming environment that you are using. See Section 2.6 for information about

creating and running Java programs in specific programming environments. But in general, you

will type the program using some sort of text editor and save the program in a file. Then, you

will use some command to try to compile the file. You'll either get a message that the program

contains syntax errors, or you'll get a compiled version of the program. In the case of Java, the

program is compiled into Java bytecode, not into machine language. Finally, you can run the

compiled program by giving some appropriate command. For Java, you will actually use an

interpreter to execute the Java bytecode. Your programming environment might automate some

of the steps for you -- for example, the compilation step is often done automatically -- but you

can be sure that the same three steps are being done in the background.

Here is a Java program to display the message "Hello World!". Don't expect to understand what's

going on here just yet; some of it you won't really understand until a few chapters from now:

/** A program to display the message

 * "Hello World!" on standard output.

 */

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello World!");

 }

} // end of class HelloWorld

The command that actually displays the message is:

System.out.println("Hello World!");

This command is an example of a subroutine call statement. It uses a "built-in subroutine" named

System.out.println to do the actual work. Recall that a subroutine consists of the

instructions for performing some task, chunked together and given a name. That name can be

used to "call" the subroutine whenever that task needs to be performed. A built-in subroutine is

one that is already defined as part of the language and therefore automatically available for use in

any program.

When you run this program, the message "Hello World!" (without the quotes) will be displayed

on standard output. Unfortunately, I can't say exactly what that means! Java is meant to run on

many different platforms, and standard output will mean different things on different platforms.

However, you can expect the message to show up in some convenient or inconvenient place. (If

you use a command-line interface, like that in Oracle's Java Development Kit, you type in a

command to tell the computer to run the program. The computer will type the output from the

http://math.hws.edu/javanotes/c2/s6.html

program, Hello World!, on the next line. In an integrated development environment such as

Eclipse, the output might appear somewhere in one of the environment's windows.)

You must be curious about all the other stuff in the above program. Part of it consists of

comments. Comments in a program are entirely ignored by the computer; they are there for

human readers only. This doesn't mean that they are unimportant. Programs are meant to be read

by people as well as by computers, and without comments, a program can be very difficult to

understand. Java has two types of comments. The first type begins with // and extends to the

end of a line. There is a comment of this form on the last line of the above program. The

computer ignores the // and everything that follows it on the same line. The second type of

comment starts with /* and ends with */, and it can extend over more than one line. The first

three lines of the program are an example of this second type of comment. (A comment that

actually begins with /**, like this one does, has special meaning; it is a "Javadoc" comment that

can be used to produce documentation for the program.)

Everything else in the program is required by the rules of Java syntax. All programming in Java

is done inside "classes." The first line in the above program (not counting the comment) says that

this is a class named HelloWorld. "HelloWorld," the name of the class, also serves as the name

of the program. Not every class is a program. In order to define a program, a class must include a

subroutine named main, with a definition that takes the form:

public static void main(String[] args) {

 statements

}

When you tell the Java interpreter to run the program, the interpreter calls this main()

subroutine, and the statements that it contains are executed. These statements make up the script

that tells the computer exactly what to do when the program is executed. The main() routine

can call other subroutines that are defined in the same class or even in other classes, but it is the

main() routine that determines how and in what order the other subroutines are used.

The word "public" in the first line of main() means that this routine can be called from outside

the program. This is essential because the main() routine is called by the Java interpreter,

which is something external to the program itself. The remainder of the first line of the routine is

harder to explain at the moment; for now, just think of it as part of the required syntax. The

definition of the subroutine -- that is, the instructions that say what it does -- consists of the

sequence of "statements" enclosed between braces, { and }. Here, I've used statements as a

placeholder for the actual statements that make up the program. Throughout this textbook, I will

always use a similar format: anything that you see in this style of text (green and in boldface) is

a placeholder that describes something you need to type when you write an actual program.

As noted above, a subroutine can't exist by itself. It has to be part of a "class". A program is

defined by a public class that takes the form:

public class program-name {

 optional-variable-declarations-and-subroutines

 public static void main(String[] args) {

 statements

 }

 optional-variable-declarations-and-subroutines

}

The name on the first line is the name of the program, as well as the name of the class.

(Remember, again, that program-name is a placeholder for the actual name!)

If the name of the class is HelloWorld, then the class must be saved in a file called

HelloWorld.java. When this file is compiled, another file named HelloWorld.class

will be produced. This class file, HelloWorld.class, contains the translation of the program

into Java bytecode, which can be executed by a Java interpreter. HelloWorld.java is called

the source code for the program. To execute the program, you only need the compiled class

file, not the source code.

The layout of the program on the page, such as the use of blank lines and indentation, is not part

of the syntax or semantics of the language. The computer doesn't care about layout -- you could

run the entire program together on one line as far as it is concerned. However, layout is

important to human readers, and there are certain style guidelines for layout that are followed by

most programmers.

Variables and the Primitive Types

NAMES ARE FUNDAMENTAL TO PROGRAMMING. In programs, names are used to refer

to many different sorts of things. In order to use those things, a programmer must understand the

rules for giving names to them and the rules for using the names to work with them. That is, the

programmer must understand the syntax and the semantics of names.

According to the syntax rules of Java, the most basic names are identifiers. Identifiers can be

used to name classes, variables, and subroutines. An identifier is a sequence of one or more

characters. It must begin with a letter or underscore and must consist entirely of letters, digits,

and underscores. ("Underscore" refers to the character '_'.) For example, here are some legal

identifiers:

N n rate x15 quite_a_long_name HelloWorld

No spaces are allowed in identifiers; HelloWorld is a legal identifier, but "Hello World" is

not. Upper case and lower case letters are considered to be different, so that HelloWorld,

helloworld, HELLOWORLD, and hElloWorLD are all distinct names. Certain words are

reserved for special uses in Java, and cannot be used as identifiers. These reserved words

include: class, public, static, if, else, while, and several dozen other words.

(Remember that reserved words are not identifiers, since they can't be used as names for things.)

Java is actually pretty liberal about what counts as a letter or a digit. Java uses the Unicode

character set, which includes thousands of characters from many different languages and

different alphabets, and many of these characters count as letters or digits. However, I will be

sticking to what can be typed on a regular English keyboard.

The pragmatics of naming includes style guidelines about how to choose names for things. For

example, it is customary for names of classes to begin with upper case letters, while names of

variables and of subroutines begin with lower case letters; you can avoid a lot of confusion by

following this standard convention in your own programs. Most Java programmers do not use

underscores in names, although some do use them at the beginning of the names of certain kinds

of variables. When a name is made up of several words, such as HelloWorld or

interestRate, it is customary to capitalize each word, except possibly the first; this is

sometimes referred to as camel case, since the upper case letters in the middle of a name are

supposed to look something like the humps on a camel's back.

Finally, I'll note that in addition to simple identifiers, things in Java can have compound names

which consist of several simple names separated by periods. (Compound names are also called

qualified names.) You've already seen an example: System.out.println. The idea here is

that things in Java can contain other things. A compound name is a kind of path to an item

through one or more levels of containment. The name System.out.println indicates that

something called "System" contains something called "out" which in turn contains something

called "println".

2.2.1 Variables

Programs manipulate data that are stored in memory. In machine language, data can only be

referred to by giving the numerical address of the location in memory where the data is stored. In

a high-level language such as Java, names are used instead of numbers to refer to data. It is the

job of the computer to keep track of where in memory the data is actually stored; the

programmer only has to remember the name. A name used in this way -- to refer to data stored in

memory -- is called a variable.

Variables are actually rather subtle. Properly speaking, a variable is not a name for the data itself

but for a location in memory that can hold data. You should think of a variable as a container or

box where you can store data that you will need to use later. The variable refers directly to the

box and only indirectly to the data in the box. Since the data in the box can change, a variable

can refer to different data values at different times during the execution of the program, but it

always refers to the same box. Confusion can arise, especially for beginning programmers,

because when a variable is used in a program in certain ways, it refers to the container, but when

it is used in other ways, it refers to the data in the container. You'll see examples of both cases

below.

(In this way, a variable is something like the title, "The President of the United States." This title

can refer to different people at different times, but it always refers to the same office. If I say "the

President is playing basketball," I mean that Barack Obama is playing basketball. But if I say

"Hillary Clinton wants to be President" I mean that she wants to fill the office, not that she wants

to be Barack Obama.)

In Java, the only way to get data into a variable -- that is, into the box that the variable names --

is with an assignment statement. An assignment statement takes the form:

variable = expression;

where expression represents anything that refers to or computes a data value. When the

computer comes to an assignment statement in the course of executing a program, it evaluates

the expression and puts the resulting data value into the variable. For example, consider the

simple assignment statement

rate = 0.07;

The variable in this assignment statement is rate, and the expression is the number 0.07. The

computer executes this assignment statement by putting the number 0.07 in the variable rate,

replacing whatever was there before. Now, consider the following more complicated assignment

statement, which might come later in the same program:

interest = rate * principal;

Here, the value of the expression "rate * principal" is being assigned to the variable

interest. In the expression, the * is a "multiplication operator" that tells the computer to

multiply rate times principal. The names rate and principal are themselves

variables, and it is really the values stored in those variables that are to be multiplied. We see

that when a variable is used in an expression, it is the value stored in the variable that matters; in

this case, the variable seems to refer to the data in the box, rather than to the box itself. When the

computer executes this assignment statement, it takes the value of rate, multiplies it by the

value of principal, and stores the answer in the box referred to by interest. When a

variable is used on the left-hand side of an assignment statement, it refers to the box that is

named by the variable.

(Note, by the way, that an assignment statement is a command that is executed by the computer

at a certain time. It is not a statement of fact. For example, suppose a program includes the

statement "rate = 0.07;". If the statement "interest = rate * principal;" is

executed later in the program, can we say that the principal is multiplied by 0.07? No! The

value of rate might have been changed in the meantime by another statement. The meaning of

an assignment statement is completely different from the meaning of an equation in mathematics,

even though both use the symbol "=".)

2.2.2 Types

A variable in Java is designed to hold only one particular type of data; it can legally hold that

type of data and no other. The compiler will consider it to be a syntax error if you try to violate

this rule by assigning a variable of the wrong type to a variable. We say that Java is a strongly

typed language because it enforces this rule.

There are eight so-called primitive types built into Java. The primitive types are named byte,

short, int, long, float, double, char, and boolean. The first four types hold integers (whole

numbers such as 17, -38477, and 0). The four integer types are distinguished by the ranges of

integers they can hold. The float and double types hold real numbers (such as 3.6 and -145.99).

Again, the two real types are distinguished by their range and accuracy. A variable of type char

holds a single character from the Unicode character set. And a variable of type boolean holds one

of the two logical values true or false.

Any data value stored in the computer's memory must be represented as a binary number, that is

as a string of zeros and ones. A single zero or one is called a bit. A string of eight bits is called a

byte. Memory is usually measured in terms of bytes. Not surprisingly, the byte data type refers to

a single byte of memory. A variable of type byte holds a string of eight bits, which can represent

any of the integers between -128 and 127, inclusive. (There are 256 integers in that range; eight

bits can represent 256 -- two raised to the power eight -- different values.) As for the other

integer types,

 short corresponds to two bytes (16 bits). Variables of type short have values in the range -32768
to 32767.

 int corresponds to four bytes (32 bits). Variables of type int have values in the range -
2147483648 to 2147483647.

 long corresponds to eight bytes (64 bits). Variables of type long have values in the range -
9223372036854775808 to 9223372036854775807.

You don't have to remember these numbers, but they do give you some idea of the size of

integers that you can work with. Usually, for representing integer data you should just stick to

the int data type, which is good enough for most purposes.

The float data type is represented in four bytes of memory, using a standard method for encoding

real numbers. The maximum value for a float is about 10 raised to the power 38. A float can

have about 7 significant digits. (So that 32.3989231134 and 32.3989234399 would both have to

be rounded off to about 32.398923 in order to be stored in a variable of type float.) A double

takes up 8 bytes, can range up to about 10 to the power 308, and has about 15 significant digits.

Ordinarily, you should stick to the double type for real values.

A variable of type char occupies two bytes in memory. The value of a char variable is a single

character such as A, *, x, or a space character. The value can also be a special character such a

tab or a carriage return or one of the many Unicode characters that come from different

languages. Values of type char are closely related to integer values, since a character is actually

stored as a 16-bit integer code number. In fact, we will see that chars in Java can actually be used

like integers in certain situations.

It is important to remember that a primitive type value is represented using ony a certain, finite

number of bits. So, an int can't be an arbitrary integer; it can only be an integer in a certain finite

range of values. Similarly, float and double variables can only take on certain values. They are

not true real numbers in the mathematical sense. For example, the mathematical constant π can

only be approximated by a value of type float or double, since it would require an infinite

number of decimal places to represent it exactly. For that matter, simple numbers like 1/3 can

only be approximated by floats and doubles.

2.2.3 Literals

A data value is stored in the computer as a sequence of bits. In the computer's memory, it doesn't

look anything like a value written on this page. You need a way to include constant values in the

programs that you write. In a program, you represent constant values as literals. A literal is

something that you can type in a program to represent a value. It is a kind of name for a constant

value.

For example, to type a value of type char in a program, you must surround it with a pair of single

quote marks, such as 'A', '*', or 'x'. The character and the quote marks make up a literal of

type char. Without the quotes, A would be an identifier and * would be a multiplication operator.

The quotes are not part of the value and are not stored in the variable; they are just a convention

for naming a particular character constant in a program. If you want to store the character A in a

variable ch of type char, you could do so with the assignment statement

ch = 'A';

Certain special characters have special literals that use a backslash, \, as an "escape character".

In particular, a tab is represented as '\t', a carriage return as '\r', a linefeed as '\n', the

single quote character as '\'', and the backslash itself as '\\'. Note that even though you

type two characters between the quotes in '\t', the value represented by this literal is a single

tab character.

Numeric literals are a little more complicated than you might expect. Of course, there are the

obvious literals such as 317 and 17.42. But there are other possibilities for expressing numbers in

a Java program. First of all, real numbers can be represented in an exponential form such as

1.3e12 or 12.3737e-108. The "e12" and "e-108" represent powers of 10, so that 1.3e12 means 1.3

times 10
12

 and 12.3737e-108 means 12.3737 times 10
-108

. This format can be used to express

very large and very small numbers. Any numeric literal that contains a decimal point or

exponential is a literal of type double. To make a literal of type float, you have to append an "F"

or "f" to the end of the number. For example, "1.2F" stands for 1.2 considered as a value of type

float. (Occasionally, you need to know this because the rules of Java say that you can't assign a

value of type double to a variable of type float, so you might be confronted with a ridiculous-

seeming error message if you try to do something like "x = 1.2;" if x is a variable of type

float. You have to say "x = 1.2F;". This is one reason why I advise sticking to type double

for real numbers.)

Even for integer literals, there are some complications. Ordinary integers such as 177777 and -32

are literals of type byte, short, or int, depending on their size. You can make a literal of type long

by adding "L" as a suffix. For example: 17L or 728476874368L. As another complication, Java

allows binary, octal (base-8), and hexadecimal (base-16) literals. I don't want to cover number

bases in detail, but in case you run into them in other people's programs, it's worth knowing a

few things: Octal numbers use only the digits 0 through 7. In Java, a numeric literal that begins

with a 0 is interpreted as an octal number; for example, the octal literal 045 represents the

number 37, not the number 45. Octal numbers are rarely used, but you need to be aware of what

happens when you start a number with a zero. Hexadecimal numbers use 16 digits, the usual

digits 0 through 9 and the letters A, B, C, D, E, and F. Upper case and lower case letters can be

used interchangeably in this context. The letters represent the numbers 10 through 15. In Java, a

hexadecimal literal begins with 0x or 0X, as in 0x45 or 0xFF7A. Finally, binary literals start

with 0b or 0B and contain only the digits 0 and 1; for example: 0b10110.

As a final complication, numeric literals in Java 7 can include the underscore character ("_"),

which can be used to separate groups of digits. For example, the integer constant for seven

billion could be written 7_000_000_000, which is a good deal easier to decipher than

7000000000. There is no rule about how many digits have to be in each group. Underscores can

be especially useful in long binary numbers; for example, 0b1010_1100_1011.

I will note that hexadecimal numbers can also be used in character literals to represent arbitrary

Unicode characters. A Unicode literal consists of \u followed by four hexadecimal digits. For

example, the character literal '\u00E9' represents the Unicode character that is an "e" with an

acute accent.

For the type boolean, there are precisely two literals: true and false. These literals are typed

just as I've written them here, without quotes, but they represent values, not variables. Boolean

values occur most often as the values of conditional expressions. For example,

rate > 0.05

is a boolean-valued expression that evaluates to true if the value of the variable rate is

greater than 0.05, and to false if the value of rate is not greater than 0.05. As you'll see in

Chapter 3, boolean-valued expressions are used extensively in control structures. Of course,

boolean values can also be assigned to variables of type boolean. For example, if test is a

variable of type boolean, then both of the following assignment statements are legal:

test = true;

test = rate > 0.05;

http://math.hws.edu/javanotes/c3/index.html

2.2.4 Strings and String Literals

Java has other types in addition to the primitive types, but all the other types represent objects

rather than "primitive" data values. For the most part, we are not concerned with objects for the

time being. However, there is one predefined object type that is very important: the type String.

(String is a type, but not a primitive type; it is in fact the name of a class, and we will return to

that aspect of strings in the next section.)

A value of type String is a sequence of characters. You've already seen a string literal: "Hello

World!". The double quotes are part of the literal; they have to be typed in the program.

However, they are not part of the actual String value, which consists of just the characters

between the quotes. A string can contain any number of characters, even zero. A string with no

characters is called the empty string and is represented by the literal "", a pair of double quote

marks with nothing between them. Remember the difference between single quotes and double

quotes! Single quotes are used for char literals and double quotes for String literals! There is a

big difference between the String "A" and the char 'A'.

Within a string literal, special characters can be represented using the backslash notation. Within

this context, the double quote is itself a special character. For example, to represent the string

value

I said, "Are you listening!"

with a linefeed at the end, you would have to type the string literal:

"I said, \"Are you listening!\"\n"

You can also use \t, \r, \\, and Unicode sequences such as \u00E9 to represent other special

characters in string literals.

2.2.5 Variables in Programs

A variable can be used in a program only if it has first been declared. A variable declaration

statement is used to declare one or more variables and to give them names. When the computer

executes a variable declaration, it sets aside memory for the variable and associates the variable's

name with that memory. A simple variable declaration takes the form:

type-name variable-name-or-names;

The variable-name-or-names can be a single variable name or a list of variable names separated

by commas. (We'll see later that variable declaration statements can actually be somewhat more

complicated than this.) Good programming style is to declare only one variable in a declaration

statement, unless the variables are closely related in some way. For example:

int numberOfStudents;

http://math.hws.edu/javanotes/c2/s3.html

String name;

double x, y;

boolean isFinished;

char firstInitial, middleInitial, lastInitial;

It is also good style to include a comment with each variable declaration to explain its purpose in

the program, or to give other information that might be useful to a human reader. For example:

double principal; // Amount of money invested.

double interestRate; // Rate as a decimal, not percentage.

In this chapter, we will only use variables declared inside the main() subroutine of a program.

Variables declared inside a subroutine are called local variables for that subroutine. They exist

only inside the subroutine, while it is running, and are completely inaccessible from outside.

Variable declarations can occur anywhere inside the subroutine, as long as each variable is

declared before it is used in any way. Some people like to declare all the variables at the

beginning of the subroutine. Others like to wait to declare a variable until it is needed. My

preference: Declare important variables at the beginning of the subroutine, and use a comment to

explain the purpose of each variable. Declare "utility variables" which are not important to the

overall logic of the subroutine at the point in the subroutine where they are first used. Here is a

simple program using some variables and assignment statements:

/**

 * This class implements a simple program that

 * will compute the amount of interest that is

 * earned on $17,000 invested at an interest

 * rate of 0.027 for one year. The interest and

 * the value of the investment after one year are

 * printed to standard output.

 */

public class Interest {

 public static void main(String[] args) {

 /* Declare the variables. */

 double principal; // The value of the investment.

 double rate; // The annual interest rate.

 double interest; // Interest earned in one year.

 /* Do the computations. */

 principal = 17000;

 rate = 0.027;

 interest = principal * rate; // Compute the interest.

 principal = principal + interest;

 // Compute value of investment after one year, with

interest.

 // (Note: The new value replaces the old value of

principal.)

 /* Output the results. */

 System.out.print("The interest earned is $");

 System.out.println(interest);

 System.out.print("The value of the investment after one year

is $");

 System.out.println(principal);

 } // end of main()

} // end of class Interest

This program uses several subroutine call statements to display information to the user of the

program. Two different subroutines are used: System.out.print and

System.out.println. The difference between these is that System.out.println adds

a linefeed after the end of the information that it displays, while System.out.print does

not. Thus, the value of interest, which is displayed by the subroutine call

"System.out.println(interest);", follows on the same line as the string displayed by

the previous System.out.print statement. Note that the value to be displayed by

System.out.print or System.out.println is provided in parentheses after the

subroutine name. This value is called a parameter to the subroutine. A parameter provides a

subroutine with information it needs to perform its task. In a subroutine call statement, any

parameters are listed in parentheses after the subroutine name. Not all subroutines have

parameters. If there are no parameters in a subroutine call statement, the subroutine name must

be followed by an empty pair of parentheses

